
rbperf: Understanding 
Ruby with BPF

Javier Honduvilla Coto <javierhonduco@gmail.com> October 28th-29th, 2020



Why BPF?



Why BPF?

- Flexibility



Why BPF?

- Flexibility
- Low overhead



Why BPF?

- Flexibility
- Low overhead
- Continuous profiling



Why BPF?

- Flexibility
- Low overhead
- Continuous profiling
- No modifications of the tracee



rbperf



rbperf

- Profile Ruby programs



rbperf

- Profile Ruby programs
- Trace complex Ruby programs execution



rbperf – on-CPU profiling

- $ rbperf record --pid=124 cpu

- $ rbperf report [...]



rbperf – Rails on-CPU profile



rbperf – tracing write(2) calls

- $ rbperf record \
--pid=124 event \
--tracepoint=syscalls:sys_enter_write

- $ rbperf report [...]



Architecture

2. Event
(timer, syscall, etc)

BPF code (bpf/rbperf.c)

Read frame

Driver 
(rbperf.py)

1. Adds info
(pid to profile, thread address)

3. Receives stacktrace

4. Serialisation 
and persistence

BPF tail-calls

Bounded 
loop



Challenges

- Implementing the stack walking for a dynamic language



Challenges

- Implementing the stack walking for a dynamic language
- Supporting multiple Ruby versions



Challenges

- Implementing the stack walking for a dynamic language
- Supporting multiple Ruby versions
- Correctness testing



Challenges

- Implementing the stack walking for a dynamic language
- Supporting multiple Ruby versions
- Correctness testing
- BPF safety features



Future plans

- Integrate in Facebook’s profiling infra
- Rewrite OSS driver program
- Make the OSS version awesome

- Better documentation (including how to measure overhead)
- Add more output formats 
- Open source GDB / drgn helper
- Other tools?
- Containers support?
- Support request-oriented workloads?



Thanks! :)

https://github.com/javierhonduco/rbperf

javierhonduco@gmail.com

@javierhonduco

https://github.com/javierhonduco/rbperf
mailto:javierhonduco@fb.com

